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bstract

A quantitative structure–property relationship (QSPR) study is suggested for the prediction of toxicity (IGC50) of nitrobenzenes. Ab initio theory
as used to calculate some quantum chemical descriptors including electrostatic potentials and local charges at each atom, HOMO and LUMO

nergies, etc. Modeling of the IGC50 of nitrobenzenes as a function of molecular structures was established by means of the least squares support
ector machines (LS-SVM). This model was applied for the prediction of the toxicity (IGC ) of nitrobenzenes, which were not in the modeling
50

rocedure. The resulted model showed high prediction ability with root mean square error of prediction of 0.0049 for LS-SVM. Results have
hown that the introduction of LS-SVM for quantum chemical descriptors drastically enhances the ability of prediction in QSAR studies superior
o multiple linear regression and partial least squares.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Nitroaromatics are hazardous chemicals that display several
anifestations of toxicity, including skin sensitization, immuno-

oxicity, germ cell degeneration, inhibition of liver enzymes and
lso a conjectured carcinogenicity [1]. Nitrobenzene toxicity
o the aquatic ciliate Tetrahymena pyriformis has been exten-
ively studied by several groups of workers [1–5] with the use
f different quantitative structure–activity relationship (QSAR)
ethodologies. QSAR [6,7] as an important area of chemomet-

ics has been the subject of a series of investigations. The main
im of QSAR studies is to establish an empirical rule or function
elating the structural descriptors of compounds under investi-
ation to bioactivities. This rule of function is then utilized to
redict the same bioactivities of the compounds not involved
n the training set from their structural descriptors. Whether the
ioactivities can be predicted with satisfactory accuracy depends

o a great extent on the performance of the applied multivariate
ata analysis method, provided the property being predicted is
elated to the descriptors.

∗ Corresponding author. Tel.: +98 8613663041; fax: +98 8613670017.
E-mail address: ali.niazi@gmail.com (A. Niazi).
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Among the investigation of QSAR, one of the most important
actors affecting the quality of the model is the method to build
he model. Many multivariate data analysis methods such as mul-
iple linear regression (MLR) [8–10], partial least squares (PLS)
7] and artificial neural network (ANN) [11] have been used in
SAR studies. MLR, as most commonly used chemometrics
ethod, has been extensively applied to QSAR investigations.
owever, the practical usefulness of MLR in QSAR studies

s rather limited, as it provides relatively poor accuracy. ANN
ffers satisfactory accuracy in most cases but tends to overfit the
raining data. The support vector machine (SVM) is a popular
lgorithm developed from the machine learning community. Due
o its advantages and remarkable generalization performance
ver other methods, SVM has attracted attention and gained
xtensive applications [12,13]. As a simplification of traditional
f SVM, Suykens and Vandewalle [14,15] have proposed the
se of least-squares SVM (LS-SVM). LS-SVM encompasses
imilar advantages as SVM, but its additional advantage is that
t requires solving a set of only linear equations (linear pro-
ramming), which is much easier and computationally more

imple.

A major step in constructing QSAR models is finding one or
ore molecular descriptors that represent variation in the struc-

ural property of the molecules by a number. A wide variety

mailto:ali.niazi@gmail.com
dx.doi.org/10.1016/j.jhazmat.2007.06.030
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f descriptors have been reported to be used in QSAR analysis
7,9,11,16–18]. Recent progress in computational hardware and
he development of efficient algorithms have assisted the rou-
ine development of molecular quantum chemical calculations.
uantum chemical calculations are thus an attractive source
f new molecular descriptors, which can, in principle, high-
st occupied molecular orbital (HOMO) and lowest unoccupied
olecular orbital (LUMO) energies, molecular polarizability,

ipole moments, and energies of molecule are examples of quan-
um chemical descriptors used in QSAR studies.

In the present paper, the MLR, PLS, GA-PLS and LS-SVM
ethods were applied in QSAR for modeling the relationship

etween the toxicity of 39 nitrobenzenes. Ab initio geome-
ry optimization was performed at the B3LYP level, with a
nown basis set, 6–31++G**. Local charges, electrostatic poten-
ial, dipole moment, polarizability, HOMO–LUMO energies,
ardness, softness, electronegativity and electrophilicity were
alculated for each compound.

. Theory

Theory of LS-SVM has also been described clearly by
uykens et al. [14,15] and application of LS-SVM in quantifica-

ion [19–21], classification [22,23] and QSAR [24,25] reported
y some of the workers. So, we will only briefly describe the
heory of LS-SVM. The LS-SVM [15] is capable of dealing
ith linear and nonlinear multivariate calibration and resolves
ultivariate calibration problems in a relatively fast way. In LS-
VM a linear estimation is done in kernel-induced feature space
y = wTφ(x) + b). As in SVM, it is necessary to minimize a cost
unction (C) containing a penalized regression error, as follows:

= 1

2
wTw + 1

2
γ

N∑
i=1

e2
i (1)

uch that:

i = wTφ(xi) + b + ei (2)

or all i = 1, . . ., N, where φ denotes the feature map.
The first part of this cost function is a weight decay which

s used to regularize weight sizes and penalize large weights.
ue to this regularization, the weights converge to similar value.
arge weights deteriorate the generalization ability of the LS-
VM because they can cause excessive variance. The second
art of Eq. (1) is the regression error for all training data. The
arameter γ , which has to be optimized by the user, gives the
elative weight of this part as compared to the first part. The
estriction supplied by Eq. (2) gives the definition of the regres-
ion error. Analyzing Eq. (1) and its restriction given by Eq.
2), it is possible to conclude that we have a typical problem
f convex optimization [15] which can be solved by using the
agrange multipliers method [26], as follows:
= 1

2
‖w‖2 + γ

N∑
i=1

e2
i −

N∑
i=1

α{wTφ(xi) + b + ei − yi} (3)

1[
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here

i =

⎡
⎢⎢⎢⎢⎣

y1

y2

...

yN

⎤
⎥⎥⎥⎥⎦ , ei =

⎡
⎢⎢⎢⎢⎣

e1

e2

...

eN

⎤
⎥⎥⎥⎥⎦ and αi =

⎡
⎢⎢⎢⎢⎣

α1

α2

...

αN

⎤
⎥⎥⎥⎥⎦

To obtain the optimum solution, one sets all corresponding
artial first derivatives to zero; the weights obtained are linear
ombinations of the training data:

∂L(w, b, e, α)

∂w
= w −

N∑
i=1

αiφ(xi) = 0, ∴ w =
N∑

i=1

αiφ(xi)

(4)

∂L(w, b, e, α)

∂e
=

N∑
i=1

γe − α = 0 (5)

hen:

=
N∑

i=1

αiφ(xi) =
N∑

i=1

γeiφ(xi) (6)

here a positive definite kernel is used as follows:

(xi, xj) = φ(xi)
Tφ(xj) (7)

An important result of this approach is that the weights (w)
an be written as linear combinations of the Lagrange multipliers
ith the corresponding data training (xi). Putting the result of
q. (6) into the original regression line (y = wTφ(x) + b), the

ollowing result is obtained:

=
N∑

i=1

αiφ(xi)
Tφ(x) + b =

N∑
i=1

αi〈φ(xi)
T, φ(x)〉 + b (8)

or a point yi to be evaluated it is:

i =
N∑

i=1

αiφ(xi)
Tφ(xj) + b =

N∑
i=1

αi〈φ(xi), φ(xj)〉 + b (9)

he α vector follows from solving a set of linear equations:[
α

b

]
=

[
y

0

]
(10)

here M is a square matrix given by:

=
⎡
⎣K + I

γ
1N

1T
N 0

⎤
⎦ (11)

here K denotes the kernel matrix with ijth element K = (xi,
j) = φ(xi)Tφ(xj) and I denotes the identity matrix N × N,

T

N = [ 1 1 ... 1] . Hence, the solution is given by:

α

b

]
= M−1

[
y

0

]
(12)
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static 50% inhibitory growth concentration. The T. pyriformis
test is a 48 h (2-day) tests. The organism can reproduce itself in
6 h, so that in 48 h there are 48/6 = 8 generations. The struc-
tures of nitrobenzenes and their corresponding toxicities are

Table 1
The structures of nitrobenzenes studied in the present study and their toxicity
[3]

No. Substituent, R Log(1/IGC50)

1a H 0.350
2a 2-NH2 0.077
3a 2-OH 0.770
4b 2-CH3 0.479
5a 2-Cl 0.676
6b 2-Br 0.863
7a 2-CH2OH −0.155
8a 2-C6H5 1.300
9a 2-CONH2 −0.721

10b 2-NO2 1.250
11a 3-NH3 0.026
12a 3-OH 0.506
13a 3-CH3 0.572
14a 3-Cl 0.836
15a 3-CN 0.451
16a 3-CH2OH −0.220
17b 3-C6H5 1.570
18a 3-CONH2 −0.193
19a 3-CHO 0.140
20a 3-NO2 0.762
21b 3-OCH3 0.670
22a 4-CH3 0.796
23a 4-C2H5 0.804
24a 4-OCH3 0.544
25b 4-OC2H5 0.829
26a 4-OC4H9 1.420
27a 4-F 0.253
28a 4-Cl 0.559
29a 4-Br 0.461
30a 4-CH2CN 0.132
31a 4-CH2Cl 1.180
32a 4-CH NOH 0.678
33a 4-NHC6H5 1.890
34b 4-CH2OH 0.101
35a 4-COOCH3 0.398
36a 4-COOC2H5 0.710
37a 4-CONH2 −0.179
A. Niazi et al. / Journal of Haza

As can be seen from Eqs. (11) and (12), usually all Lagrange
ultipliers (the support vectors) are nonzero, which means that

ll training objects contribute to the solution. In contrast with
tandard SVM the LS-SVM solution is usually not sparse. How-
ver, as described by Suykens et al. [15] a sparse solution can
e easily achieved via pruning or reduction techniques. Depend-
ng on the number of training data set either direct solvers can
e used or an iterative solver such as conjugate gradients meth-
ds (for large data sets), in both cases with numerically reliable
ethods.
In applications involving nonlinear regression it is enough

o change the inner product 〈φ(xi),φ(xj)〉 of Eq. (9) by a
ernel function and the ijth element of matrix K equals
ij = φ(xi)Tφ(xj). If this kernel function meets Mercer’s con-
ition [27] the kernel implicitly determines both a nonlinear
apping, x → φ(x) and the corresponding inner product
(xi)Tφ(xj). This leads to the following nonlinear regression

unction:

=
N∑

i=1

αiK(xi, x) + b (13)

or a point xj to be evaluated it is:

j =
N∑
i

αiK(xi, xj) + b (14)

The attainment of the kernel function is cumbersome and it
ill depend on each case. However, the kernel function more
sed is the radial basis function (RBF), exp(−(||xi − xj||2)/2σ2),
simple Gaussian function, and polynomial functions 〈xi,xj〉d,
here σ2 is the width of the Gaussian function and d is the poly-
omial degree, which should be optimized by the user, to obtain
he support vector. For α of the RBF kernel and d of the poly-
omial kernel it should be stressed that it is very important to
o a careful model selection of the tuning parameters, in com-
ination with the regularization constant γ , in order to achieve
good generalization model.

. Materials and computational methods

.1. Hardware and software

The computations were made with an AMD 2000 XP (512
B RAM) microcomputer with the Windows XP operating sys-

em and with Matlab (Version 6.5, Mathwork Inc.). The PLS
valuations were carried out by using the PLS program from
LS-Toolbox Version 2.0 for use with Matlab from Eigen-
ector Research Inc. The LS-SVM optimization and model
esults were obtained using the LS-SVM lab toolbox (Mat-
ab/C Toolbox for Least-Squares Support Vector Machines)

28]. Hyperchem (Version 6.03, Hyperchem Inc.) and Gaus-
ian 98 software [29] were used for geometric optimization of
he molecules and calculation of the quantum chemical descrip-
or.

3
3

Fig. 1. The parent structure of nitrobenzenes.

.2. Data set

The toxicities against the aquatic ciliate T. pyriformis were
easured by Dearden et al. [3]. The parent structure of nitroben-

enes is shown in Fig. 1. The toxicity is expressed as log
1/IGC50) where 1/IGC50 means 2-day (i.e. eight generations)
8b 4-CHO 0.203
9b 4-NO2 1.300

a Training set.
b Prediction set.
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isted in Table 1. We randomly divided the 39 compounds into
wo subsets, a training set of 30 compounds and a test set of 9
ompounds.

.3. Quantum chemical descriptors calculation

The molecular structures of all the nitrobenzenes were built
ith Hyperchem software for structural chemistry. Gaussian
8 [29] was operated to optimize with the 6–31++G** basis
et for all atoms at the B3LYP level. No molecular symmetry
onstraint was applied; instead, full optimization of all bond
engths and angles was carried out at the B3LYP/6–31++G**
evel. The calculated descriptors for each molecule are summa-
ized in Table 2. Local charges (LC) and electrostatic potential
EP) [30] at each atom, highest occupied molecular orbital
HOMO) and lowest unoccupied molecular orbital (LUMO)
nergies, molecular polarizabilities (MP) and molecular dipole
oment (MDP) were calculated by Gaussian 98. Quantum

hemical indices of hardness (η), softness (S), electronegativity
χ), chemical potential (μ) and electrophilicity (ω) were calcu-
ated according to the method proposed by Thanikaivelan et al.
31].

. Results and discussion

.1. Principal component analysis (PCA) of the data set

In order to detect the homogeneities in the data set and iden-
ify possible outliers and clusters, PCA was performed within
he calculated structure descriptors space for the whole data set.
CA is a useful multivariate statistical technique in which new
ariables (called principal components, PCs) are calculated as
inear combinations of the old ones. These PCs are sorted by
ecreasing information content (i.e. decreasing variance) so that
ost of the information is preserved in the first few PCs. An
mportant feature is that the obtained PCs are uncorrelated, and
hey can be used to derive scores which can be used to display

ost of the original variations in a smaller number of dimen-
ions. These scores can also allow us to recognize groups of

able 2
he calculated quantum chemical descriptors used in this study

escriptor name Notation Description

ocal charges LCi The local charges at each atom of the
base unit of nitrobenzenes

lectrostatic potential EPi The electrostatic potential at each
atom of the base unit of
nitrobenzenes

olecular polarizability MP Total molecular polarizability
ipole moment DM Total molecular dipole moment
OMO EHOMO Highest occupied molecular orbital

energy
UMO ELUMO Lowest unoccupied molecular orbital

energy
lectronegativity χ −0.5(EHOMO − ELUMO)
ardness η 0.5(EHOMO + ELUMO)
oftness S 1/η
lectrophilicity ω χ2/2η

i
f
t
s
o

R

R

w
t
i

4

s
p

ig. 2. Principal components analysis of the structural descriptors for the data
et.

amples with similar behavior. The detailed description of the
CA can be found in Ref. [32].

Here, PCA gives five significant PCs (eigenvalues > 1), which
xplains 83.44% of the variation in the data (43.14%, 22.07%,
.23%, 5.47% and 3.53%, respectively). Fig. 2 shows the distri-
ution of compounds over the two first components. As can be
een from Fig. 2, there is not a clear clustering between com-
ounds. The data separation is very important in the development
f reliable and robust QSPR models. The quality of the predic-
ion depends on the data set used to develop the model. The
oxicity of 39 specified nitrobenzenes were randomly classified
nto a training set (30 toxicity data) and a prediction set (nine
oxicity data). As shown in Fig. 2, the distribution of the com-
ounds in each subset seems to be relatively well-balanced over
he space of the principal components. The data were centered
o zero means and scaled to the unit variance.

The data set of 39 nitrobenzenes includes recent data on tox-
city [3] as summarized in Table 1. The calculated descriptors
or each molecule are summarized in Table 2. For the evalua-
ion of the predictive ability of a different model, the root mean
quare error of prediction (RMSEP) and relative standard error
f prediction (RSEP) can be used:

MSEP =
√∑n

i=1(yi,pred − yi,obs)2

n
(15)

SEP (%) = 100 ×
√∑n

i=1(yi,pred − yi,obs)2∑
(yi,obs)2 (16)

here yi,pred is the predicted toxicity using different model, yi,obs
he observed value of the toxicity and n is the number of samples
n the prediction set.

.2. MLR analysis
Among the descriptors mentioned in Section 3.3, the most
ignificant molecular descriptors were identified using multi-
le linear regression analysis with a stepwise forward selection
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ethod. The best equation obtained for the toxicity of the
itrobenzenes derivatives was:

og

(
1

IGC50

)
= 24.71 + 0.58LC1 + 11.74LC2

+9.42LC3 + 13.89LC4 + 3.25EP2

+4.32EP3 + 3.89EP4 + 3.21S + 2.08MP

+1.69DM + 0.53ω

here LC1, LC2, LC3, LC4, EP2, EP3, EP4, S, MP, DM and ω

re the local charges and electrostatic potentials on carbon atom
1, C2, C3 and C4, softness, molecular polarizability, dipole
oment and electrophilicity, respectively. In this model, the

ighly correlated descriptors were not considered. As seen, the
esulting model has eleven significant descriptors (correlation
oefficient > 0.5). Table 3 shows the descriptors coefficients, the
tandard error of coefficients, the t-values for null hypothesis,
nd their related P-values.

.3. PLS analysis

The factor-analytical multivariate calibration method is a
owerful tool for modeling, because it extracts more information
rom the data and allows building more robust models [33–38].
ccording to toxicity data (Table 1), data randomly classified

o training and prediction sets. The PLS model was run twice.
n first run (run a), all calculated descriptors (Section 3.3) were
onsidered in modeling; while in the second run (run b), after
nding the effective descriptors by the genetic algorithm (GA)
rocedure, only the effective descriptors were considered. A GA
s a stochastic method to solve optimization problems defined a
tness criterion applying the evolution hypothesis of Darvin and
ifferent genetic functions, i.e. crossover and mutation. Leardi
t al. [39–42] demonstrated that genetic algorithm after suit-
ble modifications, produces more interpretable results, since

he selected variables are less dispersed than in other methods.
he algorithm used in this paper is an evolution of the algorithm
escribed in Refs. [39,40], whose parameters are reported under
able 4.

able 3
esults of multiple linear regression analysis

escriptor Coefficient S.E.a of coefficient t-Value P-Value

ntercept 24.71 3.78 8.42 0.0001
C1 0.58 0.41 1.08 0.001
C2 11.74 2.64 3.78 0.001
C3 9.42 2.11 3.26 0.001
C4 13.89 3.04 3.91 0.001
P2 3.25 1.21 1.89 0.031
P3 4.32 1.32 2.96 0.032
P4 3.89 1.14 2.74 0.030

3.21 0.89 2.53 0.001
P 2.08 0.76 2.05 0.001
M 1.69 0.68 1.86 0.0001

0.53 0.39 0.87 0.001

a Standard error.

e
d
f
d
b
s
a
s
R

4

a
s
P
T
f
p
G

Fig. 3. Plots of PRESS vs. number of factors by PLS and GA-PLS.

The optimum number of factors (latent variables) to be
ncluded in the calibration model was determined by computing
he prediction error sum of squares (PRESS) fro cross-validated

odels using a high number of factors (half of the number of total
raining set + 1) [43]. The cross-validation method employed
as to eliminate only one compound at a time and then PLS cal-

brated the remaining of training set. The toxicity of the left-out
ample was predicted by using this calibration. This process was
epeated until each compound in the training set had been left
ut once. According to Haaland suggestion [43], the optimum
umber of factor was selected. In Fig. 3, the PRESS obtained by
ptimizing the training set of the descriptor data with PLS and
A-PLS models are shown. Table 4 shows the optimum number
f factor and PRESS value. However, modeling with GA-PLS,
s a little better than of PLS.

.4. LS-SVM analysis

The all descriptors were used as the input to develop nonlin-
ar model by LS-SVM. The quality of LS-SVM for regression
epend on γ and σ2 parameters. In this work, LS-SVM was per-
ormed with radial basis function (RBF) as a kernel function. To
etermine the optimal parameters, a grid search was performed
ased on leave-one-out cross-validation on the original training
et for all parameter combinations of γ and σ2 from 1 to 200
nd 1 to 100, respectively, with increment steps of 1. Table 4
hows the optimum γ and σ2 parameters for the LS-SVM and
BF kernel, using the calibration sets for 30 toxicity data.

.5. Prediction of toxicity of nitrobenzenes

The predictive ability of these methods (MLR, PLS, GA-PLS
nd LS-SVM) were determined using nine toxicity data (their
tructure are given in Table 1). The results obtained by MLR,
LS, GA-PLS and LS-SVM methods are listed in Tables 4 and 5.

able 4 also shows RMSEP, RSEP and the percentage error
or prediction of toxicity of nitrobenzenes. As can be seen, the
ercentage error was also quite acceptable only for LS-SVM.
ood results were achieved in LS-SVM model with percentage
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Table 4
Actual and predicted values of toxicity for nitrobenzenes using MLR, PLS, GA-PLS and LS-SVM models

Substituent, R (Fig. 1) Actual log(1/IGC50) Predicted log(1/IGC50)

MLR Error (%) PLS Error (%) GA-PLSa Error (%) LS-SVM Error (%)

2-CH3 0.479 0.427 −10.86 0.438 −8.56 0.431 −10.02 0.481 0.42
2-Br 0.863 0.784 −9.15 0.794 −8.00 0.807 −6.49 0.860 −0.35
2-NO2 1.250 1.348 7.84 1.358 8.64 1.362 8.96 1.247 −0.24
3-C6H5 1.570 1.712 9.04 1.641 4.52 1.618 3.06 1.565 −0.32
3-OCH3 0.670 0.503 −24.93 0.511 −23.73 0.563 −15.97 0.658 −1.79
4-OC2H5 0.829 0.741 −10.62 0.724 −12.67 0.789 −4.83 0.827 −0.24
4-CH2OH 0.101 0.114 12.87 0.112 10.89 0.108 6.93 0.101 0.00
4-CHO 0.203 0.251 23.65 0.237 16.75 0.219 7.88 0.204 0.49
4-NO2 1.300 1.078 −17.08 1.103 −15.15 1.191 −8.38 1.296 −0.31

NFb 11 7
PRESS 0.1702 0.1230
γ 94
σ2 14
RMSEP 0.1184 0.0769 0.0152 0.0049
RSEP (%) 12.6509 8.2

a Parameters for genetic algorithm. Population size: 30 chromosomes; probability o
b Number of factor.

Table 5
Comparison of the statistical parameters by different QSPR models for the
prediction of the log(1/IGC50)

Methods Data set R2 Q2a

MLR
Training 0.9743
Test 0.9403

PLS
Training 0.9678 0.8123
Test 0.9412 0.8022

GA-
PLS

Training 0.9875 0.8486
Test 0.9718 0.8124

LS-
SVM

Training 0.9999 0.9326
Test 0.9995 0.9214

a Coefficient for the model validation by leave-one-out.
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Fig. 4. Plots of predicted vs. actual toxicity for nitrobenzenes
197 1.6218 0.5187

f mutation: 1%; windows size for smoothing: 3.

rror ranges from −1.79 to 0.24 for toxicity of nitrobenzenes.
he plots of the predicted toxicity versus actual values are shown

n Fig. 4 for each model (line equations and R2-values are also
hown). The correlation coefficients (R2) for LS-SVM model
ere better than other models and close to one. Also, it is possible

o see that LS-SVM presents excellent prediction abilities when
ompared with other regression.

According to the results, quantum chemical descriptors are
uitable descriptors for describing the toxicity of nitrobenzene
erivatives. In MLR and GA-PLS methods, in which more effec-
ive descriptors are used, it is seen that LCi and EPi have larger

ffects on the toxicities of nitrobenzenes in atoms number 2,
and 4. And also when LS-SVM method with all descriptors

s used, prediction of toxicity in test step, with a small error is
ossible, which is improved in comparison with other methods

with (a) MLR, (b) PLS, (c) GA-PLS and (d) LS-SVM.
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MLR, PLS and GA-PLS), which shows that by using all chem-
cal quantum descriptors and also LS-SVM method, the toxicity
f nitrobenzene is predicted with satisfactory results.

. Conclusion

LS-SVM was established to predict the toxicity of some
itrobenzenes. A suitable model with high statistical quality and
ow prediction errors was obtained. The model can accurately
redict toxicity of nitrobenzenes that do not exist in the mod-
ling procedure. The quantum chemical descriptors concerning
ll the molecular properties and those of individual atoms in the
olecule were found to be important factors controlling the tox-

city behavior. In this study, the results obtained by LS-SVM,
re compared with results obtained by MLR, PLS and GA-PLS.
he results show that, LS-SVM is more powerful in prediction
f toxicity of nitrobenzenes than MLR, PLS and GA-PLS.
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